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Abstract
Tucker's combinatorial lemma is concerned with certain labellings
of the vertices of a triangulation of the n-ball. It can be used as a
basis for the proof of antipodal-point theorems in the same way that
Sperner's lemma yields Brouwer's theorem. Here we give a constructive
proof, which thereby yields algorithms for antipodal-point problems.

Our method is based on an algorithm of Reiser.
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Introduction

Let B® denote the n-ball {x e R"|||x|l < 1} where [/ x|l is the

n-1

£_-norm Zilxil, and let S denote its boundary {x ¢ R"|||x]| = 1}. We

1
will call special a centrally symmetric triangulation of B" that refines the
octahedral subdivision. The following result was proved for n = 2 in [6];

for the general case, see [2, pages 13u-1u41].

Tucker's Combinatorial Lemma. Let the vertices of a special triangulation T

of B" be assigned labels from {* 1,...,*n}. If antipodal vertices of T

on S * receive complementary labels (labels that sum to zero), then T
contains a complementary l-simplex (a l-simplex whose vertices have complementary
labels).

Tucker stated his lemma in a different form; the nonexistence of such a
labelling with no complementary l-simplex was asserted. (In [2] and an earlier
abstract [7] a related positive assertion is given; however we have not been
able to find a constructive proof of this lemma.) We will prove below that
a complementary l-simplex exists by devising an algorithm that will find one.
The algorithm is based on a method of Reiser for the nonlinear complementarity
problem [4].

Not only is Tucker's lemma stated in [6) in terms of nonexistence; his
derivation of antipodal-point theorems from it was by contradiction, We briefly

indicate below how constructive proofs of two such theorems follow from

our algorithm.

n

The Borsuk-Ulam Theorem. If a continuous function maps S into Rn, at least

one pair of antipodal points is mapped into a single point.

n

Proof. Let the function be f: S” + R" and define g: g" +R" by

g(x) = £f(x, 1-)|x|| ) - £(-x, || x}|-1) ; note that g(-x) = -g(x) for x e s"-1,
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Now for any special triangulation T eof Bn, label vertex v +{ (-1)

if lgi(v)[ = maxj[gj(v)l and gi(v) is positive (negative) (if g(v) = 0,

we are done). In case of ties, the least such index is chosen. This

labelling satisfies the requirements of the lemma and hence T contains

a complementary l-simplex. Let x® be any limit point of such complementary
l-simplices for a sequence of special triangulations whose meshes approach

zero. A continuity argument implies that g(x*) = 0, and hence (x*, 1-|[x*|])

and its antipode are mapped by f into the same point.

The Lusternik-Schnirelmann Theorem. If S" is covered by n+l closed sets,

at least one of them contains a pair of antipodal points.

]’ Label the vertices of any special

triangulation T of B" as follows. If v is such a vertex, let

Proof. Let the sets be Cl,Cz,...,C

y = (v, l-llvlr). Determine the least i such that Ci contains y or -y.
If Ci contains both y and -y, the theorem is proved. Also, if 1 = n+l
then since neither y nor -y 1lie in Cj’ 1 <3j <n, both must lie in

Cn+1 and we are done. Hence assume that for each vertex v, i 1is between

1 and n and Ci contains one of y, -y. Label v +i or -i accordingly.
Again, the labelling satisfies the requirements of the lemma and a complementary
1-simplex exists. Similarly, a limiting argument (some complementary pair

of labels occurs infinitely often; take any limit point of the corresponding

complementary l-simplices) proves the claim.

Meyerson and Wright [3] and Barany [1] have also given algorithms for
the Borsuk-Ulam theorem. Both use vector-labelling, and their algorithms should
be more efficient for practical problems; however no computationally tractable
way is yet known to implement their techniques for dealing with the theoretical

possibility of degeneracy. We note that in an algorithm it would be preferable




to use the n-ball induced by the £_-norm, q: = {xe¢ Rnllxil <1 all {);
several efficient special triangulations of B: exist, for example, Kl

and J, {5, Chapter III). Figure 1 below shows Bz rather than B>

for this reason.

The Algprithm

First we need some notation. We note by sgn(A) the sign (0,+1 or -1)
of any real number A; similarly, for a vector x = (xi) € Rn, sgn(x) is
the vector (sgn(xi)). For any sign vector 8 ¢ R" (i.e., cach component
s; is 0, +1 or -1), C(s) denotes the closure of {x ¢ Rnfsgn(x) = s}, i.e.
the set of those x for which L is nonnegative, zero or nonpositive according as
s is 1,0, or -1, for each i. We call C(s) an orthant - actually it is an
orthant of a coordinate subspace. Any special triangulation T induces triangulations
of C(s) n B® for each s. Let o be a simplex of T; then sgn(x) 1is the same
for each x in the relative interior of o -- we let sgn(c) be this sign
vector. Clearly, C(sgn(c)) is the smallest orthant containing o. Since T

is centrally symmetric, every simplex o lying in Sn-l has an antipodal simplex

-0 = {-x|x € o}.

Definition. For any sign vector s, a simplex o ¢ T is s-labelled if,
whenever s is nonzero, 8, i 1is a label of some vertex of o. If o is
sgn{o)-labelled, we say o is completely labelled.

Note that the O-simplex (0} 1is always completely labelled by default
since its sign vector is zero. Also, i{f o c S"‘l is completely labelled, so
is its antipodal simplex.

The algorithm proceeds by tracing a path in a graph G whose nodes are
completely labelled simplices until it finds a complementary l-simplex. The

graph is given by the following:




“ Definition. Two completely labelled simplices 0 and Tt are adjacent

‘ in G if they both lie in s7! and are antipodal, or if one is a face of the

T ST T e o

other and o n t is sgn(o u t)-labelled. The degree of a completely
labelled simplex is the number of completely labelled simplices adjacent

to it in G.

Figure 1 illustrates completely labelled simplices and adjacency for ;

i ns= 2,

Proposition.
(a) The O-simplex {0} has degree 1;

TN e 1 ez

(b) Each completely labelled simplex containing a complementary l-simplex

has degree 1;

(c) Every other completely labelled simplex has degree 2.

Proof. Let s be the sign vector of the completely labelled simplex ¢ and
suppose s has k nonzero components. Then o 1lies in the k-dimensional
orthant C(s). In addition, the vertices of o must contain at least k
distinct labels, since o is s-labelled. Hence o 1is a (k-1)- or a k-simplex.

Suppose first that o is a (k-1)-simplex. If ¢ does not lie in Sn°l,
it is a face of precisely two k-simplices in C(s), both completely labelled
since ¢ is. If o lies in Sn_l, it is a face of one completely labelled
k-simplex in C(s), and its antipode is completely labelled. In either case,
o 1is of type (c) and has degree 2.

Suppose now ¢ is a k-simplex. It then has k+1 vertices, with one

extra label besides the k it is forced to have by completeness., This other

label is either a duplicate of one of the k, the complement of one of the

k, or t § with ’j = 0. In the first case, o has two faces with all
k labels and both are completely labelled; o 1is of type (c¢) and has degree

2. In the second case, ¢ has just one face with the required k labels;




o 1is of type (b) and has degree 1. In the last case, suppose the extra
label is +j (-j) and let t be a sign vector agreeing with s except

that tj = +#1 (-1). Then o is a face of a unique (k+l)-simplex in C(t)
and this simplex is completely labelled. In addition, o has one face

with the required k 1labels; the only exception is when o is the 0O-simplex
{0}. Hence o is either {0} and has degree 1 or is of type (c) with
degree 2. The proposition is now proved.

The combinatorial lemma follows directly from the proposition, since
every graph has an even number of nodes of odd degree. Indeed, we have a
stronger result; there is an 0dd number of completely labelled simplices
containing a complementary l-simplex. However, since some complementary
l-simplices are contained in no completely labelled simplex and others in
several, we can say nothing of the parity of complementary l-simplices.

More than just a proof, we now have an algorithm: follow a path of
adjacent completely labelled simplices from the O-simplex {0}. By the
proposition, the path can terminate only when it encounters a complementary
1-simplex. In Figure 1 the sequence is CIERSELPYEERFR ST The algorithm can
be stated more concisely as follows; this description corresponds to Reiser's

algorithm in all respects except the reflection step.

Algorithm
Step 0 (Initialization). Set s =v =0c¢ Rn, ¢ = {v}. Go to

Step 1.
Step 1 (Labelling). Find the label ei of v, € =1$1, 1 <ic<nm.
If it is the complement of the label of another vertex of o, stop. If

s, = 0 go to Step 2, otherwise to Step 3.




T

M 1

Step 2 (Increasing the dimension). Set s; = e Let t be the
simplex of C(s) with o as a face, and v its new vertex. Set o + 7
and go to Step 1.

Step 3 (Dropping a vertex). Find the vertex w # v of o with
label €i. Let t be the face of o0 opposite w. If t lies in Sn-l,
set g+ -0, S+ -s, v+ -w and go to Step 1. If sgn(t) = s, let
p be the simplex in C(s) with 1 as a face distinct from o, and
let v be its new vertex; set 0 + p and go to Step 1. Otherwise go to
Step 4.

Step 4 (Decreasing the dimension). Find i with (sgn('r))i = 0 and

s; £0. Set o+ 1, €+ S;» S+ sgn(1), v « w and go to Step 3.

In this form the algorithm generates and

P02712992942%29920412 735

Ty 38 its successive o's in Figure 1.

Note that the only requirement on the labelling is that antipodal vertices
in Sn-l have complementary labels--the coordinate structure of B" is
immaterial. Hence the labels can be permuted so that complementary labels
remain complementary and the algorithm run again. This is a possible method
for obtaining several complementary l-simplices--but of course it is not
guaranteed to find more than one. In Figure 1, if we interchange labels
1 and -2, -1 and 2 then the completely labelled simplex 0 containing

~

the complementary l-simplex Tt is generated.

e

R




All simplices marked are completely labelled. o's are 2-simplices,

t's 1l-simplices and p's O-simplices. Ty and T are complementary. All

simplices with consecutive indices are adjacent. Since 1 is not (1,-1)-

-

labelled, o and t are not adjacent.

Figure 1
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